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1. Phys. A Math. Gen. 27 (1994) 5239-5250. Printed in the UK 

The exponential map for the conformal group 0(2,4)  

A 0 Barut, J R Zenitt and A Lauferts 
Physics Department, University of Colondo, Boulder. CO 80 309-390, USA 

Received 21 March 1994 

Abstract. We present a general method to obtain a closed finite formula for the exponential map 
from the Lie algebra to the Lie group for the defining representation of orthogonal groups. Our 
method is based on the Hamilton-Cayley theorem and some special properties of the generators 
of the orthogonal group and is also independent of the mebic. We present an explicit formula 
for the exponential of generators of the SO+(p.  q)  groups with p t q = 6, in particular, dealing 
with the conformal gmup S0+(2.4) which is homomorphic to the SU(Z.2)  group. This result 
is needed in the generalization of U(1)-gauge uansformations to spin-gauge vansfonnations 
where the exponential plays an essential role. We also present some new expressions for the 
caefficienls of the secular equation of a matrix. 

1. Introduction 

The well known important formulae for the groups SU(2) and SO(3)  

ei(e/2)o.n = cos(0/2)h + iu . nsin(Bj2) 

eeC1"J = 13 + Ljnj sin0 + (.&jnj)'(l - cos@) 
(1.1) 

have been recently generalized to the group SL(2, C) and its homomorphic group SOt(], 3) 
( a n i  and Rodrigues 1990, 1992) but no such formulae seem to exist in the literature for the 
group SOt@, 4). The purpose of the present work is to fill this gap, presenting an explicit 
finite formula for the series of the exponential of a g-skew-symmetric matrix (4.8) which 
represents the infinitesimal generators of the orthogonal group SOt@, 4). 

The group SO+(2,4), or its covering SU(2,2), appears in several different contexts in 
theoretical physics. For instance, it is the invariance group of the bilinear invariants in the 
Dirac theory of the elecaon. It is also homomorphic to the relativistic conformal group, 
the largest group that leaves the Maxwell equations invariant (Bateman 1910, Cunningham 
1909) or, in other words, it is the largest group which preserves the light cone of the 
Minkowski spacetime (Gursey 1956, Barut 1971). For a good review see Fulton ef al 
(1962). Other applications are found in the study of dynamical groups ( B a t  1972). 

More recently, the group SU(2,2), or its subgroups, has been used in spin-gauge 
theories in an attempt to generalize the minimal coupling and to unify electrodynamics 
and gravitation (Dehnen and Ghaboussi 1986, Chisholm and Farewell 1989, Liu 1992, 
Barut and McEwan 1984) and in conformally compactified spacetimes ( B m t  etal 1994). 
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The mathematical problem can be stated basically as the sum of the exponential series for 
the matrix representing the generators of orthogonal groups. The Hamilton-Cayley theorem 
plays a key role in solving this problem since it gives a recurrence relation between the 
powers of the matrix and, hence, we can transform the matrix series into a real-number 
series. 

The exponential map, as well as other types of parametrization for the group elements 
of unitary groups, in particular SU(3) and SU(4).  deserves more attention in the literature 
since unitary groups play an important role in quantum mechanics and particle physics (see 
Barnes and Delbourgo (1972) and references therein) and, in particular, the work of Bincer 
(1990) on unitary groups, which presents a parametrization of the exponential map through a 
set of orthonormal vectors obtained by considering the diagonal form of the generators. The 
work of Bincer (1990) is related to the Jordan-form method of cons'uucting the exponential 
since the latter provides a parametrization of the exponential by the eigenvectors of the 
matrix (Faria-Rosa and Shimabukubo 1993). 

There are several articles in the literature concerned with the exponential of an arbitrary 
matrix, for instance the work of Moler and van Loan (1978) has a comprehensive review of 
methods, analytical and numerical, for dealing with the exponential of an arbitrary matrix 
as well as an extensive list of references. 

We remark that besides the exponential map there are other possible parametrizations 
of group elements using the Lie algebra (see, for example, Lounesto (1987) for the Cayley 
map). However, the exponential map deserves special attention due to its relationship with 
systems of differential equations as discussed below. 

The symmetry properties of the matrices representing the generators of orthogonal 
groups are also helpful as they allow us to separate the series into even and odd powers. It 
is a remarkable characteristic of orthogonal groups that either even or odd powers occur in 
the Hamilton-Cayley theorem which amounts to a great simplification for the sum of the 
exponential series. These facts are discussed in sections 2 and 3 where general recurrence 
relations are obtained for the powers of the generators of orthogonal groups. 

An important step in summing the series of a matrix is to consider the eigenvalues of 
the matrix instead of the coefficients which appear in the Hamilton-Cayley theorem. We 
expect the series for the exponential of a matrix to be expressed by means of elementary 
functions of eigenvalues of the matrix because if we consider the solutions of a system of 
first-order differential equations 

- =  dX HX 
dt 

the solutions are given by the exponential of H parametrized by t ,  i.e. X(f) = extX, (see 
Magnus (1954) and Fer (1958) for the cases where H is a function of time). On the other 
hand, we can express the components of the vector X(t) as exponential (scalar) functions 
of the eigenvalues as given below 

xj(r) = eAk'cj, (1.3) 

where the Cjk are chosen to fit the initial value X,. 
Therefore, if we compare both solutions, it is obvious that the matrix elements of the 

exponential of a matrix must be elementary functions of the eigenvalues. Another way to 
see that the above assertion holds is to look at the Jordan form of the matrix H (Faria-Rosa 
and Shmabukubo 1993). 
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In section 4 we derive an explicit finite formula for the exponential of a matrix 
representing the generator of the SU+(p. 4) group with p + q = 6. In order to close 
the series easily we have used the discriminant related to the secular equation. The series 
for the exponential is written as a product of elementary functions of the eigenvalues by the 
first few powers of H .  We remark that the series is obtained in an intrinsic way, without 
explicit reference to the mah.ix elements. 

In section 5 we introduce a matrix representation for the generators of the S0(2 ,4)  and 
some formulae which simplify the previous results, especially a new expression for the odd 
powers. We specialize the previous result for the Lorentz group recovering the result of 
Zeni and Rodrigues (1990) and also equation (1.1). 

In the appendix we discuss a new method for obtaining the coefficients of the secular 
equation from the trace of the powers of the matrix. 

2. The generators of orthogonal groups 

The matrices related to the defining representation of the orthogonal groups O ( p ,  q )  are 
defined by the following condition: 

A ‘ ~ A  = g  or g ~ ’ g  = A-’ (2.1 ) 

where g is a diagonal matrix with p entries equal to +1 and q entries equal to -1 and the 
superscript t indicates the transposed matrix. 

The connected component of the identity of the orthogonal groups will be hereafter 
indicated by S U + ( p .  q) .  In what follows, we are concerned with those transformations 
A E SO+(p,  q )  that can be written as e” where H is called an infinitesimal generator of 
the group, i.e. an element of the Lie algebra (Miller 1972, B a t  and Raczka 1986). 

Equation (2.1) shows that the generators of the orthogonal group are given by 

gH’g = -H (2.2) 

since we have that geH’g = egH’g. 

diagonal matrices. 
corresponds to the number of elements in the upper (or lower) triangular matrix. 

2.1. Matrix symmety ofthe powers of the generators 

Lemma. 
the other hand, the even powers of H are g-symmetric matrices, i.e. 

The generators of the orthogonal goup will be called here g-skew-symmetric null- 
The number of independent real parameters is (n2 - n)/2 which 

The odd powers of H are again g-skew-symmetric null-diagonal matrices. On 

H2” = g(H‘)&g while Hz”+’ = -g(H‘)Z”+’g. (2.3) 

This result simplifies the task of finding a finite closed form for the exponential since 
it shows that we can work separately with the series of even and odd powers 

We will show that the recurrence relations for both series of even and odd powers are 
similar, i.e. we can deduce one from another. 
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2.2. Parity of the secrilar equation 

We consider now the secular equation for g-skew-symmetric matrices 

A 0 Barut et a1 

det(H - U,,) = 0. (2.4) 

Lemma. Let H be an n x n g-skew-symmetric matrix. If n is odd (even) then only 
odd (even) powers of the eigenvalues are present in the secular equation (Turnbull (1960) 
presents a proof for the Euclidean case but the result holds for every metric), i.e. 

det(H - A )  = (-1)"(h" + C2hn-' + C4hn-l + .  . . + C,_,hX) (2.5) 

where x = 0 if n is even and x = 1 if n is odd. 

symmetry of H (2.2): 
The lemma follows from the identity below which can be proved by using the g-skew- 

d e t ( H - h ) =  (-l)"det(H+h). (2.6) 

Thus it is clear that the determinant has a defined parity under the change of h to -A. 

3. The HamiIton-Cayley theorem 

The Hamilton-Cayley theorem guarantees that a matrix satisfies a matrix equation as its 
secular equation, i.e. for the generators of the orthogonal groups we have 

H"+C2N"-'+C4Hn-$+...fC, -,H' = O  (3.1) 

where the Cs are the coefficients of h in the secular equation (2.5). 
According to equation (3.1), we can express H" in the case of even n in terms of the 

following set of matrices H"-', H"-4,. . . , I,. By iterating equation (3.1) by HZ we can 
express all even powers of H in terms of the same set of matrices as discussed below. 

Also, we can apply an analogous reasoning to express all the odd powers of Hnxn, with 
n even, by means of the set H"-', Hn-3 ,..., H .  

3.1. Recurrence relations for the powers of the generators 

In the following, we consider n x n matrices with even n, i.e. generators of the groups 
0(2m), 2m = n, and consider the recurrence relations for even powers. In the case of the 
groups O(2n + I ) ,  the recurrence relations shown below can be obtained in an analogous 
way. 

Let us change our previous notation and write the recurrence relation resulting from 
secular equation (3.1) as follows. 

H" = QH"-' +  OH"-^ + . . . + uoHZ + XOI" (3.2) 

where we are considering that n is even and I,  denotes the n x n identity matrix. In general, 
we set (k 2 0) 

H"'= =n~H"-2+bkH"-4+ . . .+v,,H2+xkl, ,  (3.3) 
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We are going to determine a recurrence relation for the coefficients a ,  b, . . . , x present 
in the previous equation. To do this we iterate the equation for H"+%, multiplying it  by 
H 2 ,  and, after substituting equation (3.2) for H", we obtain 

ak+l = aaak + bk bk+l = akbo + ck ... uk+I = akuO + Xk X k f l  = akx0 

(3.4) 

The recurrence relations are the same for the coefficients of even and odd powers provided 
that we define for the odd powers the following formula (n even) 

H"+'+" = ak H"-I + bk H"-' + . , , + vk H3 + X K  H .  (3.5) 

A closer analysis of equation (3.4) shows that if we determine the coefficient ai then all 
other coefficients will be determined. The key to this problem is that the last coefficient 
xk is expressed by means of ab. Furthermore, we can get a recurrence relation for ax only 
involving ai ( j  < k )  by substituting the recurrence relations for bk in the expression for ak. 

4. The orthogonal groups O@,  q),  p + q = 6 

For the orthogonal groups O ( p ,  q )  where p + q = 6, the secular equation is a third-order 
polynomial in H2 

H 6 - ~ H 4 - b o H Z - c o 1 6  =O. (4.1) 

The previous recurrence relations for the coefficients a k ,  bk and Ck (3.4) can now be put in 
a simpler form which ensures that if we determine the coefficients then the others are 
determined, as mentioned before 

CX+I  = akc0 

bail = akbo f ak-lCo 

k > 0 

k > 1 

ak+l =ukao+nk- lbo+a~-~co  k > 2  

where the first values follow from equation (3.4) 

(4.2) 

a1 = a: +bo bl = aobo + CO a2 = ala0 + aobo + CO.  (4.3) 

Our goal is to get a general formula for the coefficients ak, bk, ck from these recurrence 
relations in tenns of the eigenvalues. For this purpose, we express the coefficients ao, bo 
and CO,  that appear in the secular equation (4.1), in terms of the eigenvalues which are the 
roots of that equation. We remark that the secular equation is a third-order equation in the 
square of the eigenvalues, so that the eigenvalues appear in pairs that we will indicate by 
(h, k y ,  z!=z]. We are going to use only three eigenvalues ( x .  y. z). Therefore, we have 

2 2  a O = x Z + y  + z  
2 2  2 2  2 2  b o = - x y  - X Z  - Y Z  

c o = x y z .  2 2 2  

(4.4) 
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We shall also make use of the multiplier w to simplify the expression for the recurrence 
relations. w is equal to the square root of the discriminant of the secular equation and is 
given by 

A 0 Barut et al 

w = (x2 - yZ)(z2 - x2)(y2 - 22). (4.5) 
Writing the above recurrence relation for ar: (4.2) by means of x ,  y and z, and after 
multiplying by w ,  we find the following final form of the recurrence relations 

(4.6) 
which can be proven by finite induction and holds for k 2 0 in spite of the fact that 
equation (4.2) holds only fork > 2. 

Substituting the above expression for war: into the recurrence relation for bk (4.2), we 
get the following recurrence relation for the product wbk: 

wan- = (2 - 22)y2+6 + (ZZ - Y2)X2+6 + ( y 2  - x 2 )e 2k+6 

Wbk = (Z4 - X4))'2+6 + (Y4 - 24)xw+6 4- (X4 - y4)z2+6 (4.7) 
which holds again for k 2 0. 

4.1. The series for the exponential O ( p ,  q ) ,  p + q = 6 
We have seen that the series for the exponential of the generators of orthogonal groups can 
be conveniently divided into the series for even and odd powers. Moreover, each series can 
be expressed by means of only a few powers of the generator. Summarizing OUT previous 
result, we have transformed the matrix series into a real-number series for the coefficients 
ak, br: and ck for which recurrence relations were obtained in the last section for the groups 
O ( P ,  q ) .  P + q = 6. 

After substituting equation (3.3) for H6+%. the series of even powers of H. multiplied 
by w ,  can be written as 

(6 + U C ) !  
wbk 

(6 t 2k)! 
where all the sums run from zero to infinity. 

We can also write an analogous expression for the series of odd powers. 
Considering the previous recurrence relations (4.6). (4.7) and (4.2), the series of even 

and odd powers can be summed easily and the result for the exponential of H, multiplied 
by w, is given by 
weH = [ ( y 4 - z 4 ) c o ~ h x + ( z 4 - ~ 4 ) c o ~ h y + ( x 4 - y 4 ) c o ~ h ~ ] H 2  

+ [(z' - y 2 ) c o s h x + ( ~ 2 - z 2 ) c o ~ h y +  (yZ-x2)coshz]H 4 

+ [ ( x 2  -z2)x2zzcOShy+ (2' -~)y2z2COShX + (yZ-X2)X2y2COShZ116 
sinhx sinhz 

Y X Z 

sinhx sinhz + ( r 4  - 24). 
Y 

(4.8) 
sinh y sinh x sinh .: 

Y 
The above series are valid for all groups S#+(p .  q )  with p + q  = 6. The number of possible 
imaginary eigenvalues distinguishes the metrics and so transforms some of the hyperbolic 
functions given above into trigonometric functions. For example, all eigenvalues of the 
generator H are imaginary for the group O(6,O). 

In the next section we are going to introduce some particular cases of the above formula. 
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5. The S0+(2,4) group 

At this point in the discussion we w&t to focus on the group S0+(2,4). A generic generator 
of the group S0+(2,4) can be represented by the following matrix: 

el e2 f e9 0 bs -b2 U, a, 

a2 ag c 0 
U0 -U1 -U2 -U3 0 

--a0 a1 

where the metric is given by g = diag(+, -, -, -, -, +). hij (i 6 j) are the matrix 
elements of H and Cij is the standard basis for the Lie algebra of S0+(2,4) in the defining 
representation, i.e. they are matrices with only two non-zero g-skew-symmetric elements 
which are equal to f l  (Barut 1971). 

The form above for the matrix generator, and therefore also for the metric, was chosen 
in such a way that makes it possible to establish a closer connection with the generators of 
SU(2,2) which can be represented by Dirac matrices (Barut 1964, Kilhberg et al 1966). 
For example, the components q, and ap. /L E [O, 31 are related to a vector and axial vector 
in Dirac algebra. On the other hand, we set the generator of S0+(2,4) in such a way that 
one of its subgroups, the Lorentz group S0+(1, 3), has a priviledged place; it corresponds 
to the 4 x 4 block formed by the ej and bj, j = 1,2,3. The last component of the generator 
above c corresponds to the generator of a chiral transformation in the Dirac algebra, i.e. a 
transformation generated by ys. 

The coefficients Ck, present in the secular equation, can be witten as (see also appendix, 
equations (A.4) and (AS)) 

C 2 = - i h i . h . .  - -LTrHZ 
2 I J ' -  2 

C, = - $ p z j p j i  = -f Tr P z  (5.2) 

C6 = det H = [i Tr H . PI2 = [ ihi jpj i12 

where we sum over repeated indices. The elements pjj of the matrix P are defined below. 
We remark that the determinant of a skew-symmetric matrix is equal to the square of a 

polynomial which defines the PfafXan of the matrix. 
The elements pij introduced into equation (5.2) are, except for a sign, the Pfaffian of 

the matricesobtained from H cutting the ith and j th  rows and also the ith and jth columns 
(Turnbull 1960). A general expression for the pji in this order with i c j is 

Pji hkihmn - hrmhin + hknhlm (5.3)  

where ( i jk lmn)  is an even permutation of (123456). Otherwise, we need to change the 
sign of the terms in the right-hand side. We are also considering in the above formula only 
i < j for each hij. 

We can form a matrix with the Pfaffians agregate pij that will be called hereafter the 
Pfafian matrix associated with H which will be indicated by P. We define the Pfaffian 
matrix P such that it has the same symmetry as H ,  i.e. (gP) '  = -gP .  The name Pfaffian 
for the matrix P is well justified since we have 

P H =  H P = m & , g P f a f f H 1 6 .  (5.4) 
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The explicit expression for the Pfaffian of the matrix H (5.1) is given by 

A 0 Banti et al 

Cb = (ce . b - uoa.  b+ sob. v + e .  (a  x U))‘. 

We are using a short-cut notation; e = (el, e2, e3) and U, b and a are three-dimensional 
vectors from which we can compute the dot . and cross x product in the usual way. 

Moreover, it is remarkable that the series for the odd powers can be rewritten by means 
of H ,  H 3  and P, avoiding the use of H5. The advantage of working with the matrix P 
instead of H5 is clear since P is second order i n  H .  The above remark is based on the 
following equation that can be verified directly 

HS = aoH3 + boH - i&P (5.5) 

where i = &i is the imaginary unit. We remark that CO = -det H ,  cf equation (4.1). 
The above formula, as well as the formulae presented in the appendix, equations (A.4) 

and (AS), were checked by a symbolic mathematical program. 
The recurrence relation which comes from the Hamilton-Cayley theorem (4.1) can be 

obtained from the above equation. However, the converse is not true, i.e.. we cannot obtain 
the latter equation from the Hamilton-Cayley theorem if dei H = 0, but the above equation 
holds even when det H = 0. 

The series for the odd powers given in equation (4.8) can be rewritten by means of 
H ,  H’ and P. After substituting the above expression for H 5  and using equation (4.4) to 
replace ao, bo and c, by x ,  y and z ,  we find 

- i [ (x2-z2)~zs inhy+(zZ-y2)yzs inhx+(y2-x2)xys inhzl~  

+ [ ( ~ ~ - z ~ ) y s i n h y + ( z ~ - y ~ ) ~ s i n h x + ( y ~ - x ~ ) z s i n h z ] H ’ .  (5.6) 

Now, we shall discuss as a special case how the series for the Lorentz group SO+(l ,  3) 
presented in Zeni and Rodrigues (1990) can be obtained from the series for S0+(2,4).  Let 
us write F for the matrix H (5.1) when up, up and c vanish. Therefore, the proper and 
orthochronous Lorentz transformations are generated by the matrix F .  In this case, two of 
the eigenvalues [ & z )  of F vanish since det F = 0. Moreover, the product of the other two 
eigenvalues x and y can be written as e.b = i, x ,  y since in this case C4 = (zy)’ = -(e.b)’. 

We also obtain a simpler recurrence relation for the powers of F ;  instead of the 
Hamilton-Cayley, equations (4.1) or (5.5) ( a n i  and Rodrigues 1990), now we have 

F3 - ( x z  + yZ)F - ixgG = 0 (5.7) 

where G is the dual (Hodge) matrix obtained from F by changing ej -+ bj and bj + -ej. 
The dual G has the following significant property 

F G  = GF = ixy.74 = (e. b)J4 (5.8) 

where J4=diag(l ,1 ,1 ,1 ,0 ,0) .  

F2, 54 and F, G, respectively. 
From the two equations above it is clear that we can express F4 and F3 by means of 
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We remark that if we put z = 0 in equation (4.Q the coefficient of identity I6 becomes 
equal to w' = -x2yz(x2 - yz): the value of o (4.5) when z = 0. Also, the coefficient of 
the Pfaffian matrix P, given by equation (5.6), vanishes in this case. 

Substituting equation (5.7) for F3(= H3) in equation (5.6) and for F4 in equation (4.8), 
we can write the series for the 6 x 6 matrix F by means of Jq, F ,  F 2  and G as 

x sinhx - y sinh y ysinhx -xsinhy 

(5.9) 

The series presented in Zeni and Rodrigues (1990, equation (6)) are obtained from the 
equation above by changing y + -iy', except for the additive factor I6 - 54. 

As a further special case, the generators of SO(3) are given by the matrix F when 
ej = 0, j E [1,3]. The exponential of a generator of SO(3) (1.1) can be obtained from the 
formula above by putting x = 0, changing y + 4 8 ,  54 -+ J3 = diag(0, 1, 1, 1,0,0) and 
considering that F = SCjnj .  

cosh x - cosh y x2coshy - y'coshx 

6. Conclusions 

In this article we presented a finite formula for the exponential of the Lie algebra to the 
conformal group SO(2, 4) which is homomorphic to the special unitary group Str(2.2). 
This latter group has been used in spin-gauge transformations where the exponential can be 
used to determine the explicit form of the transformation of the Dirac matrices (Barut and 
McEwan 1984). 

We plan to discuss the related result to the exponential map for the SLr(2.2) group in 
a forthcoming paper and establish some connections with the works already existing in the 
literature for the unitary groups SU(n),  see, for example, Barnes and Delbourgo (1972) and 
Bincer (1990). 

At this point, we recall that the use of other algebras, in particular Clifford algebras, 
can simplify the discussion; as seen in Zeni and Rodrigues (1992) where the Clifford 
algebra of spacetime was used to get the exponential map to Spin+(I, 3) - SL(2, C) 
in a very simple way, establishing a straightforward generalization of the first part of 
equation (1.1), this in turn is the exponential of a pure quaternion (Silva Leite (1993) 
obtained the exponential of octonions as another possible generalization of a quaternion 
exponential). We are particularly concemed with the Clifford algebra generated by the 
vector space R2,4 since we have Spin+@, 4) - S U ( 2 , 2 ) .  

Our approach to obtaining the exponential can be used for every orthogonal group since 
equation (3.4) holds universally. From equation (3.4) it is possible to obtain an explicit 
formula for the exponential map from the Lie algebra in the connected component to the 
identity of the group, as we have achieved in this article for the S0+(2,4) group. It is a 
remarkable result since the exponential map is usually presented only in the infinitesimal 
form and assumed to hold only in a neighbourhood of the identity ( B a t  and Razcka 1986, 
Miller Jr 1972). 

Also from the finite formula for the group element we can easily discuss the group 
law and related subjects. In particular, it makes the Baker-Campbell-Hausdorff formula 
superfluous (Miller Jr i972) since it provides an exact solution for problems related to 
this series (see Zeni and ,Rodrigues (1992) for a discussion related to the Lorentz group, 
SL(2 ,  C)). 
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Appendix. Eigenvalues with power series expansion 

Here we present some expressions for the coefficients of the secular equation for general 
matrices and then we specialize our formulae for the generators of orthogonal groups. We 
remark that formulae for these coefficients are usually obtained by using the minors of the 
matrix (Turnbull 1960). Our approach is different and gives the coefficient by means of the 
trace of powers of the matrix. 

We use the following formula for calculating the determinant (Miller Jr 1972): 

det(B -AI,) = (-1)” exp 

where we make use of the series expansion for In(1 + x )  and the exponential functions. 
From this formula we can see directly that if the odd powers of the matrix B are traceless, 

e.g. the generators of orthogonal groups, we have only odd or even powers of the eigenvalue 
in the secular equation, according to whether n is odd or even (cf equation (2.10)). 

Collecting terms of the same power in eigenvalue h we get 

Since the determinant of the secular equation has only positive powers in h, the series in 
negative powers of h is actually a finite series and we must have ck = 0 fork z n. To 
gain an understanding of this, we recall the Hamilton-Cayley theorem which provides us 
with a relationship for the powers k > n of a matrix. 

The coefficients Ck can be written in the following way: 

with 

j - l  P - 1  

Lj  k + j - m  - 1 -Eli and I,, = k + p - m - Eli 
k l  i =1  
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The first three coefficients for a generic matrix Bn,, with n 2 3 are 

CI = -TrE 

(A.4) C2 = ? ( T r E ) ’ -  1 $TrB2 

C3 = -f Tr B3 + f TrB Tr B2 - $(Tr B)3. 

As mentioned before, if the odd powers of the matrix B are traceless, the coefficients 
Ck, fork odd, vanish. In this case, the formula for the coefficients (A.3) can be substantially 
simplified because the only non-vanishing terms are those with m = p. 

We remark that the determinant of the matrix is given by the coefficient C.. For 
example, for the generators of the O(p,  q )  groups with p + q = 6, we have that 

c 6  = - I ( S T r  48 B6 - 6Tr B2Tr B4 + ( T r B 2 ) 3 ) .  

Finally, we remark that if we represent a second-rank tensor by a matrix, the ‘principal’ 
invariants of the tensor are just the coefficients of the secular equation of the mamx (Landau 
and Lifshitz 1951). The most common invariants related to a matrix are the trace, the first 
coefficient of the secular equation and the determinant, i.e. the last coefficient in the secular 
equation. However, all the coefficients present in the secular equation are also invariant. 
This becomes clear from the formula above since these coefficients are expressed by means 
of the trace. 
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